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We introduce a continuum model describing data losses in a single node of a packet-switched network �like
the Internet� which preserves the discrete nature of the data loss process. By construction, the model has critical
behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We
show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian
power-law correlations in time, in spite of the Markovian character of the data arrival process. The continuum
model allows for rather general incoming data packet distributions and can be naturally generalized to consider
the buffer server idleness statistics.
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I. INTRODUCTION

Complex networks underpin many diverse areas of sci-
ence. They manifest themselves in relationships between net-
work topology and functional organization of complex neu-
ron structures �1,2�, interacting organic molecules describing
metabolic activity in living cells �3�, multispecies food webs
�4,5�, numerous aspects of social networks �6–9�, and the
connectivity and operation of the Internet �10–12�. New
models of network topology such as scale-free �13� or small
world �14� have been found to be surprisingly good at de-
scribing real-world structures. A consequence of the realiza-
tion that complex networks describe universal properties of
many such problems has resulted in extensive research activ-
ity by the physics community in the past decade �see Refs.
�15,16� for reviews�.

A problem of particular significance in many application
domains is the resiliency of complex networks to the random
or selective removal of nodes or links. For example, the loss
of connectivity in scale-free networks �10,17–20� has impli-
cations on the tolerance of the Internet to protocol or equip-
ment failures. Typically, the site or bond disorder acts as an
input which makes them very general and applicable to a
wide variety of networks.

More recently there has been an increasing realization that
network breakdowns can not only result from the physical
loss of connectivity, but can arise due to the loss of data
traffic in the network �i.e., congestion� �21,22�. However,
only a few dynamical models of traffic in networks have
been considered to date �11,24–26�. In the case of commu-
nication networks the excessive loading of even a single
node can give rise to cascades of failures arising from traffic
congestion and consequently isolate large parts of the net-
work �27�. To describe the operational failure arising due to
congestion at a particular network node, one needs to ac-
count for distinct features of the dynamically “random” data
traffic which is the reason for such a breakdown.

In this paper we model data losses in a single node of a
packet-switched network such as the Internet. There are two
distinct features which must be preserved in this case: the
discrete character of data propagation and the possibility of
data overflow in a single node. In the packet-switched net-

work data is divided into packets which are routed from
source to destination via a set of interconnected nodes �rout-
ers�. At each node packets are queued in a memory buffer
before being serviced, i.e., forwarded to the next node �there
are separate buffers for incoming and outgoing packets but
we neglect this for the sake of simplicity�. Due to the finite
capacity of memory buffers and the stochastic nature of data
traffic, any buffer can become overflown which results in
packets being discarded.

We focus on a continuum description of the discrete pro-
cess of data packet loss. Such a continuum model represents
a simplification that preserves the salient features of the data
loss mechanism, while at the same time it can be more easily
embedded in a larger model describing data packet losses in
a large network. The continuum description allows us to
overcome inevitable difficulties in incorporating realistic dis-
tributions of incoming traffic into a discrete-time class of
models, such as one we introduced earlier �23�. On the con-
trary, the continuum model can easily incorporate a com-
pletely general distribution of packet lengths and interarrival
times, both essential in modeling data loss in finite-sized
buffers.

We introduce a model where noticeable data losses in a
single memory buffer start when the average rate of random
packet arrivals approaches the service rate. Under this con-
dition the model has a built-in sharp transition from free
flow to lossy behavior with a sizable fraction of arriving
packets being dropped. A sharp onset of network congestion
is familiar to everyone using the Internet and was numeri-
cally confirmed in different models �28–30�. Here we stress
that such a congestion originating from a single node is char-
acterized by strong critical fluctuations of the data loss in the
vicinity of the built-in transition.

In particular, we will show that a Markovian input process
can give rise to long-range temporal correlations of data
losses that are strongly non-Markovian in the critical regime.
In the context of the Internet, this means that when excessive
data losses start it is more probable that they persist for a
while, thus impacting on network operation. As we will dis-
cuss later in this paper, this non-Markovian behavior has a
profound effect on the operation of current Internet proto-
cols, such as the transport control protocol �TCP�, that dic-
tate how users experience the network operation.
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While data loss is natural and inevitable due to data over-
flow, we show that loss rate statistics turn out to be highly
nontrivial in the realistic case of a finite buffer, where at the
critical point the magnitude of fluctuations can exceed the
average value. The fluctuations still obey the central limit
theorem but only in the unrealistically long-time limit. The
importance of fluctuations in some intermediate regime is a
definitive feature of mesoscopic physics, albeit the reasons
for this are absolutely different �note that even in the case of
electrons, the origin of the mesoscopic phenomena can be
either quantum or purely classical, see, e.g., �31��.

The average loss rate and/or transport delays were previ-
ously studied, e.g., in the theories of bulk queues �32,33� or
a jamming transition in traffic flow �34�. What makes present
considerations intrinsically different from these theories is
the very nature of the quantity we consider: the losses �not
existing in flow models� make the description of the traffic
process essentially non-Hermitian. Although fluctuations in
network dynamics were previously studied �see, e.g., Refs.
�11,30,35��, this was done through measurements or numeri-
cal simulations of data traffic. Here we present an analytical
model of these fluctuations and their temporal correlations.

Due to the symmetry of the continuum description of a
buffer with respect to its full �lossy� and empty �idle� states,
we also derive corresponding expressions for the statistics of
idleness of the buffer server �i.e., output links from routers�.
This quantity is essential in determining the way the statistics
of data traffic going into a subsequent buffer along a data
path are shaped. This is self-evidently important when we are
attempting to describe the operation of an entire network.

II. THE MODEL

We consider a single finite-size memory buffer fed with a
random data-packet stream. It stores the packets and then is
serviced by the data link that sends this packets further along
the network on a first-in–first-out basis. This adequately
models the output buffer attached to the switching device in
the router. The speed of the input line of the buffer is much
bigger than the speed of the output line. The reason is that
the input comes from the switching fabric of a router which
is designed to operate very fast indeed in order to feed a
large number of such buffers, but sequentially. The capacity
of the output line is normally smaller.

Hence, we can model the packet arrival as an instanta-
neous renewal process. The storage capacity of the buffer is
L, measured in bits. The lengths of arriving packets are
treated as random, all being much smaller than L. The ser-
vice rate �i.e., the rate at which packets depart from the
buffer� is considered to be deterministic, as randomness in it
is negligible as compared to that of the input traffic. We
normalize the lengths of packets p, the speed of the output
link rout, and the queue length � by the size of the buffer L
�which is henceforth set to 1�.

The procedure for the renewal cycle is described as fol-
lows: at the moment of arrival of a packet of size p, the state
of the queue is �, this is followed by the gap � �random
interarrival time� until the next arrival. We introduce the time
scale required to empty a full buffer provided there are no

new arrivals, �0�1 /rout. If �+ p�1 then the packet joins the
queue and the queue length prior to the next arrival is ��
= � + p−� /�0 if ���0 and ��=0 otherwise. If �+ p�1 then
the packet is discarded and the queue length prior to the next
arrival is ��= �−� /�0 if ���0 and ��=0 otherwise.

Since the maximum packet size is much less than 1 �the
buffer size� and assuming that the average incoming traffic
rate rin �also normalized to the buffer size� is close to the
service rate

�rin�0 − 1� � 1, �1�

we can treat p, �, and � as continuous stochastic variables.
The packet length, p, and the packet interarrival gap, �, are
the input random variables in our theory. We can incorporate
any generic distribution of each of these variables into the
input stochastic parameters of the model under consideration
�provided that all the moments of such a distribution are
finite which is always true for any realistic distribution�.

Our aim is to calculate the statistics of the amount of the
dropped traffic and the service lost due to idleness of the
output link during time t��̄ ��̄ is the average interarrival
time� in the regime �1�. In this regime and for observation
times t��̄, the system can be described by the Fokker-
Planck equation �36�. We introduce the transitional probabil-
ity density function, w��� , t ; � �, where w��� , t ; � �d�� is the
conditional probability that the queue has length between ��
and ��+d�� at the time t, provided that it had length � at
time 0. Then we have

�tw���,t; � � = − a���w���,t; � � +
1

2
�2���

2 w���,t; � � , �2�

where a and �2 are the average and the variance of the
change of the queue size per unit time

a �
1

�t
�� � �, �2 �

1

�t
���2�, �t → 0. �3�

Here �¯� means the ensemble averaging over random input,
i.e., over all the packets lengths p and interarrival times �.
Irrespective of the distributions of p and �, only their first
two moments determine the statistics �3� provided that the
time scale is chosen as described above. Note that in the
limit �t→0 the variance is, indeed, the second moment of
the change of the queue size, defined in the above equation.
The natural boundary and initial conditions for Eq. �2� are
imposed as follows:

�J���,t; � ����=0,1 = 0, �4�

�w���,t; � ��t=0 = ���� − � � , �5�

where

J���,t; � � � aw���,t; � � −
1

2
�2���w���,t; � � �6�

is the probability current. This means that this current van-
ishes at the boundary which translates crudely to the intu-
itively obvious statement that the probability cannot flow
beyond the queue boundaries �=0 and �=1. The condition
�t→0 in Eq. �3� means that �t is much smaller than the
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observation time, but still large enough so that the underlying
stochastic processes can be considered as continuous �36�,

�̄ � �t � t . �7�

The solution of Eqs. �2�, �4�, and �5� can be formally
expressed as follows:

w���,t; � � = 2ev���−��	
k=1

	
exp�− �4
2k2 + v2���

4
2k2 + v2

� �2
k cos�2
k��� + v sin�2
k����

� �2
k cos�2
k � � + v sin�2
k � �� , �8�

where

v �
a

�2 , � �
�2t

2
. �9�

Note that the solution �8� can be expressed in terms of 
functions.

For the Laplace transform of w��� , t ; � � we have

W���,�; � � � L�w���,t; � �

=
1

2

ev���−��

� sinh���
2v2

�
cosh����� + � − 1��

+
2�v

�
sinh����� + � − 1��

+ cosh������ − � � − 1��

+ cosh����� + � − 1��� , �10�

where

� � �� + v2 �11�

From Eq. �10� we have the Laplace images of the probability
densities of returning to the boundaries as

W�0,�;0� =
1

�
�� coth��� − v� ,

W�1,�;1� =
1

�
�� coth��� + v� . �12�

These will be used in the next section.

III. STATISTICS OF LOSSES

In this section we concentrate on the statistics of the
losses due to the buffer overflowing. The corresponding for-
mulas for the statistics of the server idleness can be obtained
using transformation �→1− � ,v→−v.

First, we estimate the size of fluctuations of the losses on
a time scale t�2 /�2. In order to do that we consider the
dynamics of the system near the boundary �=1 which is
governed by the following transitional probability:

w0���,t; � � =
1

�2
�2t
exp−

a��� − � �
�2 −

a2t

2�2�
�
exp−

��� − � �2

2�2t
�

+ exp−
�2 − �� − � �2

2�2t
��

−
a

�2 exp2a�1 − ���
�2 �erfc2 − �� − � + at

�2�2t
� ,

�13�

which is the solution of Eq. �2� when the boundary �=0 is
sent to −	. The change in the state of the system during time
t can then be represented as follows:

� � �t� � �� − � = ��0�t� + ��loss���,t; � � , �14�

where ��0�t� is the change in the state of the system if there
was no boundary, its statistics is determined by

���0�t�� = at, ����0�t��2� = �2t + o�t� , �15�

and ��loss��� , t ; � � is the amount of traffic lost due to buffer
overflowing with fixed boundary conditions for the queue
state: ��0�=� and ��t�=��. The moments of the changes of
the queue length, Eq. �14�, can be defined as follows:

��� � �t��n� =� d��d � ��� − � �nw0���,t; � �p��� , �16�

where p��� is the stationary distribution of buffer occupancy.
For the first two moments defined by Eq. �16� we find in

the limit t→0

�� � �t�� = at +
�2t

2
p�1�, ��� � �t��2� = �2t . �17�

From Eqs. �14�, �15�, and �17� we can conclude that

���loss�t�� =
�2t

2
p�1� ,

����loss�t��2� + 2���0�t���loss�t�� = o�t� . �18�

The first of the relations �18� means that ��loss��� , t ; � � is
nonzero only if �� , � �1 in the limit t→0. The second rela-
tion means either

����loss�t��2�, ���0�t���loss�t�� = o�t� �19�

or

��loss�t� = − 2��0�t� + o��t� . �20�

The relation �20� does not make sense physically, so in what
follows we accept the conditions of Eq. �19� and show that
they are consistent with the subsequent calculations.

Next we lift the restriction t�2 /�2. To this end we intro-
duce the conditional moments of the quantity ��loss defined
in Eq. �14� with the condition that the system was in the state
� at the beginning of the observation interval,
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mloss
�k� �t; � � =� d�����loss

k ���,t; � �� . �21�

In the continuous limit, the quantity ��loss can be represented
as a certain stochastic time integral. Then the kth power of
this integral could be represented in the time-ordered form as
follows:

mloss
�k� �t; � � = k ! rloss

k �
i=1

k �
0

ti+1

dti�
j=1

k−1

w�1,tj+1 − tj;1�

� w�1,t1; � �, tk+1 � t , �22�

where w��� , t ; � � is determined by Eq. �8� and

rloss � lim
t→0

1

t
� d��� d � ��loss���,t; � �

= lim
t→0

1

t
�

−	

1

d��d � ��� − � − at�w0���,t; � � =
�2

2
.

�23�

Equation �22� is exact in the continuous limit and can be
interpreted as follows. The losses occur only when the sys-
tem reaches the upper boundary �=1, i.e., the buffer is full
and any extra packet is discarded. The probability density
w�1, t1 ; � � in Eq. �22� describes the first loss event for the
system which started in state � while the product describes
subsequent consecutive loss events.

For the corresponding unconditional moments of losses in
the stationary regime we have

mloss
�k� �t� � �

0

1

d � mloss
�k� �t; � �p���

= k ! p�1��
i=1

k �
0

�i+1

d�i�
j=1

k−1

w�1,tj+1 − tj;1� , �24�

where � is defined in Eq. �9� and p��� is the stationary solu-
tion of Eq. �2�,

p��� =
2ve2v�

e2v − 1
. �25�

To calculate the moments mloss
�k� �t� we consider their

Laplace transforms,

Mloss
�k� ��� � L�mloss

�k� �t� = �
0

	

d�e−��mloss
�k� �2�/�2�

= k ! p�1��W�1,�;1��k−1 1

�2 , �26�

where W�1,� ;1� is defined by Eq. �10�.
Taking now the inverse Laplace transform we have

mloss
�k� �t� � L�

−1Mloss
�k� ��� =

1

2
i
�

�−i	

�+i	

d�e��Mloss
�k� ��� . �27�

From Eq. �26� we obtain

mloss
�1� �t� = p�1�� = p�1�

�2t

2
. �28�

For the Laplace transforms of Eq. �26� with k�1 we can
identify the following two regimes:

Mloss
�k� ��� � 
k ! p�1��−�k+3�/2, � � 1

k ! pk�1��−�k+1�, � � 1.
�29�

Thus we obtain the moments defined by Eq. �27� as follows:

mloss
�k� �t� � �k ! p�1�

��k+1�/2

���k + 3�/2�
, � � 1

pk�1��k, � � 1.

�30�

Now we calculate the probability density function �PDF�
ploss�x ; t� of the amount of the lost traffic, x, during time t. To
calculate it we consider its characteristic function in the �
representation,

P̃loss�s;�� � LxPloss�x;�� ,

Ploss�x;�� � L�ploss�x;t� . �31�

On performing explicitly the Laplace transform in Eq. �31�
we obtain the standard expression for the characteristic func-
tion in terms of the Laplace transforms of the unconditional
moments of losses given by Eq. �26�,

P̃loss�s;�� = 	
k=0

	
�− s�k

k!
�

0

	

dxxkL�ploss�x;t�

= Ploss��� + 	
k=1

	
�− s�k

k!
Mloss

�k� ��� , �32�

where

Ploss��� = L�ploss�t�, ploss�t� = �
0

	

dxploss�x,t� , �33�

with 1− ploss�t� being the probability for the system not to
drop a single packet over the period of time t. Substituting
Mloss

�k� ���, Eq. �26�, into Eq. �32�, we find

P̃loss�s;�� = Ploss��� +
p�1�
�2 	

k=1

	

�− s�k�W�1,�;1��k−1

= Ploss��� +
p�1�

�2W�1,�;1�− 1 +
1

1 + sW�1,�;1�� .

In order that Ploss�s ;�� does not have an abnormal behavior
�in particular, it does not contain terms such as ��x��, we
must assume that

Ploss��� =
p�1�

�2W�1,�;1�
. �34�

Hence,
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Ploss�x;�� =
p�1�

�2W2�1,�;1�
exp−

x

W�1,�;1�� . �35�

Integrating this relation over x, we recover Eq. �34�, which
shows that our assumption is indeed correct.

In the regimes of short and long times we have

ploss�x;t� � �p�1�erfc x
�4�

� , � � 1

��x − �p�1�� , � � 1,
� �36�

and

ploss�t� � �p�1��4�



, � � 1

1, � � 1.

�37�

The conditional PDF �with the condition that the system
dropped at least one packet during the time t� can be defined
as follows:

wloss�x;t� �
ploss�x;t�
ploss�t�

� �� 


4�
erfc x

�4�
� , � � 1

��x − �p�1�� , � � 1.
�

�38�

It is most important to stress here that the fluctuations of
losses are strong for physically long times given by the first
line above; however, these times are still short on the scale of
1 /�2. For the unphysically long time, the second line above,
the fluctuations obviously obey the central limit theorem.

Now let us compare the results of the present approach
with those of considerations in Ref. �23� where a simple
discrete-time model for studying losses in a single buffer was
introduced. In that model packets of fixed size arrive with
probability p at the equidistant time epochs. The service was
deterministic, and half of the packet was served between
successive time epochs. To make the comparison, we calcu-
late the central moments of losses in a similar way as the
unconditional ones in Eq. �24�. Here we will consider the
variance of the losses �loss

2 �t� only in the limit ��1,

�loss
2 �t� � mloss

�1� �t� 1

�v�
coth�v� − sinh−2�v��

� �
2

3
mloss

�1� �t� , �v� � 1

1

�v�
mloss

�1� �t� , �v� � 1.

�39�

In this long-time limit the ratio of the variance to the square
of the average vanishes, so that the distribution of data losses
obeys the central limit theorem, as also seen from the second
line of Eq. �38�. This is essentially in agreement with the
result of the compressibility �	 in �23�. Naturally, the present
considerations are much more general as we have not im-
posed any artificial limitations on the random input traffic.

Finally, we calculate the correlator of the fluctuations of
losses measured during two time intervals of length t1 and t2
correspondingly and separated by the time T,

corr�t1,t2,T� = �
0

1

d � ��t1,t2,T� − mloss
�1� �t1�mloss

�1� �t2�

where

��t1,t2,T� = rloss
2 �

0

t1

dt1��
0

t2

dt2�w�1,t1� + t2 − t2� + T;1�p�1�

with rloss defined in Eq. �23�.
In the regime T� t1 , t2 and T�2 /�2 it can be shown that

corr�t1,t2,T� →
T→	

0, �40�

as we would expect. In fact, the correlator goes to zero ex-
ponentially if v�0. In the opposite regime 2 /�2�T� t1 , t2
we have

corr�t1,t2,T� = mloss
�1� �t1�mloss

�1� �t2�
1

p�1�
� 2


�2T
, �41�

which is again in agreement with the results of the discrete-
time considerations �23�.

IV. DISCUSSION AND CONCLUSION

As we would expect intuitively, loss events separated
widely in time are uncorrelated as shown by Eq. �40�. By
widely separated in time, we mean that the time separation of
the two observation intervals in which losses occur is much
longer than the time over which fluctuations of queue length
become comparable or much bigger than the buffer size it-
self, i.e., 2 /�2.

However, in the case when the separation time is much
smaller than 2 /�2, the correlations of loss fluctuations are
decaying very, very slowly, as can be seen from Eq. �41�.
Such time intervals are likely to be comparable or even
smaller than the round trip times for typical TCP connec-
tions. TCP is the protocol that controls the rate at which data
is sent across a network, between a particular source and
destination. The exact details of the congestion control op-
eration of TCP can be found in �37�. For our purposes we
shall only focus on its salient congestion control features and
the implications of the result of Eq. �41� on it.

TCP limits its sending rate as a function of the perceived
network congestion. It operates on a virtual control loop of
sending packets, receiving acknowledgements, and estimat-
ing the round-trip time. Once a packet is lost, the sender cuts
its transmission rate by half. If no other loss is detected it
increases its sending rate linearly by a small increment. But
if a subsequent loss event is detected it cuts its transmission
rate in half again. If successive loss events occur, which
according to Eq. �41� is likely on the relevant time scale, the
reduction in transmission rate can be dramatic and poten-
tially unnecessary. As there are multiple TCP connections
experiencing losses at the same buffer this will lead to a
cycle of rapid underusage and slow convergence to conges-
tion, which is clearly undesirable and ineffective.

The existence of a phase transition for network losses, as
well as strong fluctuations in its vicinity, have been numeri-
cally demonstrated in Ref. �28�. Furthermore, the strong tem-
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poral fluctuations of losses are in qualitative agreement with
the numerical results for the TCP throughput �and loss� in
Ref. �29� �see Figs. 3–6 therein�.

Studying of spatial correlations of loss fluctuations over a
network is work in progress. This will help us quantify the
second significant aspect of TCP operation which is its reac-
tion to time-out events, as this is connected to correlated
losses and delays around the sequence of buffers forming
each control loop.

To conclude, we emphasize that the stability of a network
with respect to data loss was mostly analyzed in the past
from the viewpoint of the loss of physical connectivity in the
network topology where a failure of a given node or link was
treated as a �probabilistic� input into a network model. Here
we have studied dynamical fluctuations in data loss in a
single node �memory buffer� of the network. We have shown
that the strong fluctuations and long-time memory in losses

inevitably follow from the discrete character of signal propa-
gation in the packet-switched networks. This single-node
fluctuations can potentially trigger a cascade of failures in
neighboring nodes and thus result in a temporal failure of
large parts of the network. Naturally, correlations of losses
between nodes are important �see, e.g., Ref. �30�� and will be
incorporated in an appropriate manner. In the next stage, we
intend to utilize these features of the local data loss as dy-
namical inputs into the network and thus study possible
abrupt increase of data loss in the network triggered by a
local overload.
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